160708 Electronic quasiparticles in the quantum dimer model

“Electronic quasiparticles in the quantum dimer model”

Dr. Junhyun Lee
Harvard University
Jul. 08 (Fri.), 14:00 PM
E6-2. 1st fl. #1323

We study a recently proposed quantum dimer model for the pseudogap metal state of the cuprates. The model contains bosonic dimers, representing a spin-singlet valence bond between a pair of electrons, and fermionic dimers, representing a quasiparticle with spin-1/2 and charge +e. By density matrix renormalization group calculations on a long but finite cylinder, we obtain the ground state density distribution of the fermionic dimers for a number of different total densities. From the Friedel oscillations at open boundaries, we deduce that the Fermi surface consists of small hole pockets near (π/2, π/2), and this feature persists up to doping density 1/16. We also compute the entanglement entropy and find that it closely matches the sum of the entanglement entropies of a critical boson and a low density of free fermions. Our results support the existence of a fractionalized Fermi liquid (FL*) in this model.